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=PFL  The Need for Miniaturization and Better Hardware: BMI 3

= The goal of BCI technology is to
give severely paralyzed people
alternative ways to communicate

Simple interfaces:

= Paint program, email writing
= TV controls, eating, drinking
= Robotic arm control

B NX-422

https://blackrockneurotech.com/



=PFL  The Need for Miniaturization and Better Hardware: BMI “

= The goal of BCI technology is to
give severely paralyzed people
alternative ways to communicate

Simple interfaces:

= Paint program, email writing
= TV controls, eating, drinking
= Robotic arm control

Future:

» More electrodes, richer input signal

= Better algorithms and Al for more
complex decoding tasks

= Better hardware for chronic use
outside the clinic

B NX-422

https://blackrockneurotech.com/



=PFL The Need for Miniaturization and Better Hardware: Stimulation °

= Neurostimulation to suppress
disease symptoms, or replace
a function, trigger movement,

Future:
= Smaller devices for minimally-
invasive surgery

= Advanced electronics for high-

resolution recording and safe Deep-Brain Stimulation ~ Epilepsy Implants: Seizure Detection
stimulation (DBS) for Movement and Suppression with Stimulation
: o Disorders
» Advanced algorithms and circuits
for closed-loop control

https://vnstherapy.com/
https://www.neuropace.com/
https://www.medtronic.com/
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Future: Fully Implantable

Fully implantable multichannel
recording device

Wireless
link

Portable
controller

Mechanical
actuators with
both power and
accuracy

Touch and
position
sensors




£PFL  Thought-to-Text Miniaturized Brain-Machine Interface (MiBMI)
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Transistor Scaling & Higher Complexi

=PFL Moore’s Law
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£PFL Course Outline

B NX-422

Types of neural signals, miniaturized implantable systems
Electrical recording, neural amplifiers

= |low-noise and low-power CMOS design

Digitization and compression methods and circuits

Overview of neurostimulation methods and circuits

Prediction of neurological disorders: hardware implementation
Closed-loop neuromodulation circuits

BMI systems

11



=PFL  Extracellular Recording of Action Potentials

= Two electrodes are placed inside the brain in extracellular medium (one for recording,
one for reference)

= During an AP, influx of sodium into cell causes large change in voltage potential in the
surrounding area relative to distant areas

= This causes a voltage difference between the recording electrode and the (distant)
reference electrode

= We detect small voltages outside, from current looping back to dendrite
= The voltage we detect is much less than the differences in membrane voltage

Extracellular recording

B NX-422

12



=PFL  Extracellular Recording of Action Potentials

13

Two electrodes are placed inside the brain in extracellular medium (one for recording,
one for reference)

During an AP, influx of sodium into cell causes large change in voltage potential in the
surrounding area relative to distant areas

This causes a voltage difference between the recording electrode and the (distant)
reference electrode

We detect small voltages outside, from current looping back to dendrite
The voltage we detect is much less than the differences in membrane voltage

Extracellular recording
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=PrL  Extracellular Recording of Action Potentials

= Can only observe action potentials (spikes)

= Assumption: neurons convey information in their
spikes

electrode signal (uVolt)
g8 o 8
1 | 1

= The rate of spikes carries information
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Examples of Extracellular Electrodes

SEM image

Utah array

15


http://www.sci.utah.edu/~gk/abstracts/bisti03/
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=PFL  Examples of Extracellular Electrodes
Mlchlgan probes

SEM image e . e
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Neuralink, preprint 2019
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http://www.sci.utah.edu/~gk/abstracts/bisti03/

=PrL EEG and ECoG

= EEG: sheet of electrodes on surface of = ECO0G: sheet of electrodes on surface of
head (on skin): not invasive cortex: invasive but not brain penetrating
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ECoG (epidural or subdural)

Intraparenchymal (single neuron
.’/or local field potential)
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=PrL EEG and ECoG

= Electrocorticography (ECoG) or intracranial EEG (iEEG)

Compared to EEG, ECoG has a number of favorable characteristics:

= Higher spatial resolution (0.5-10mm versus several centimeters for EEG)

= Higher amplitude, easier to capture

= Less vulnerability to artifacts such as electromyographic (EMG) or
electroocular (EOG) activity

= Broader bandwidth (i.e., <500Hz versus <50Hz for EEG)

EEG

ECoG (epidural or subdural)

Intraparenchymal (single neuron
or local field potential)
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=PFL  Local Field Potentials (LFPs) ”
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< 300 Hz : Local Field Potentials (LFP)
300 — 10kHz : Single-Unit Activity (AP or “spikes”)

Local Field Potential (LFP) — electrical activity of all cells averaged over some
spatial neighborhood

High-pass filtering in <1ms range gives spikes

LFP signal is lower frequency

DC Offset
+50mV

+——\—— Vvoltage

Local Field Potential (LFP)

1Hz-300Hz; 10pV-1mV. Action Potential
spikes

time  300Hz-10kHz
10uV-1mV




